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SUMMARY

We propose a hyper-parameter optimization workflow for
training the deep learning framework to simulate the effect of
boundary conditions for wave propagation. Hyper-parameter
selection is a crucial step in model building and has a direct
impact on the performance of machine learning models. We
implement three different hyper-parameter optimization tech-
niques, namely random search, Hyperband, and Bayesian opti-
mization, for the proposed network to simulate boundary con-
ditions and compare the strengths and drawbacks of these tech-
niques. The automated deep learning framework optimizes
network training and significantly improves the efficiency of
the workflow. The proposed method reduces human effort in
the network tuning process, improves the performance of deep
learning models by achieving the optimal minima, makes the
model more reproducible, and can be extended to different
deep learning based applications. Tests on different models
verify the effectiveness of the proposed approach.

INTRODUCTION

Deep learning algorithms have demonstrated high performance
in both research and commercial applications (Yu and Zhu,
2020). Different deep learning models are suitable for differ-
ent types of problems and datasets. During the model tun-
ing process, different model configuration arguments known
as hyper-parameters are specified by the user to tune the net-
work for a given problem statement. Hyper-parameters must
be set prior to model training and can not be updated during the
training process. Selecting the best hyper-parameters for mod-
els has a direct impact on the performance of the model (Yang
and Shami, 2020). Conventionally, hyper-parameters are man-
ually tuned by using an iterative trial and error based approach
(Zöller and Huber, 2021). However, manual tuning is inef-
ficient because of large number of hyper-parameters in com-
plex models, nonlinear hyper-parameter interactions, and time-
consuming model evaluations (Yang and Shami, 2020). These
factors have inspired research on automated tuning of hyper-
parameters known as hyper-parameter optimization (HPO).

HPO has multiple advantages over the manual hyper-parameter
tuning process (Kaur et al., 2021). It reduces the considerable
human effort in manual tuning of a large number of hyper-
parameters, especially for complex models and large datasets.
It improves the accuracy and efficiency of the models and makes
the models and research more reproducible (Yang and Shami,
2020; Yu and Zhu, 2020). HPO problems need specialized
optimization techniques because they can sometimes be non-
convex and non-differentiable; therefore, traditional optimiza-
tion techniques such as gradient descent may result in local
instead of global minima (Luo, 2016). In addition, HPO algo-
rithms should also be able to effectively handle different cat-

egories of hyper-parameters such as discrete (e.g., whether to
use early stopping), continuous (e.g., learning rate), categori-
cal (e.g., type of optimizer), etc.

Several studies proposed different categories of HPO meth-
ods such as decision theoretic methods, Bayesian optimiza-
tion models, and multifidelity optimization techniques. These
methods have their own advantages and limitations. Decision
theoretic methods (Bergstra et al., 2011; Bergstra and Bengio,
2012) define a hyper-parameter search space and determine the
best performing hyper-parameter combination by performing
either an exhaustive search using grid search methods or a ran-
dom selection using random search methods. These methods
treat each parameter configuration independently and may re-
quire considerable time and space, especially the exhaustive
grid search methods. Multifidelity optimization algorithms (Li
et al., 2017) like Hyperband address the limited resource is-
sue and in each iteration eliminates poorly performing hyper-
parameter combinations to save computation time. However,
similar to decision theoretic approaches, Hyperband also per-
forms each evaluation independently of the previous evalua-
tions and can thus perform unnecessary function evaluations in
poorly performing regions. This issue can be mitigated by us-
ing Bayesian optimization (Eggensperger et al., 2013), which
uses the history of previous evaluations to determine the next
configuration. Bayesian models belong to the category of se-
quential models and are difficult to parallelize; however, they
can usually converge to optimal hyper-parameter combinations
within a few iterations.

In this work, we propose an HPO workflow for a deep learning
framework to simulate boundary conditions for wave propaga-
tion. We perform a comparative analysis between three differ-
ent HPO algorithms, namely random search methods, which
are decision theoretic approaches, Hyperband optimization, wh-
ich is a multifidelity optimization algorithm, and Bayesian op-
timization. We demonstrate that Bayesian optimization is more
efficient and leads to a better performance in the testing phase
than random search or Hyperband optimization. Although in
this paper we demonstrate the HPO workflow on boundary
condition simulation problem, the proposed workflow can eas-
ily be integrated into a variety of deep learning frameworks
for different problem statements. Using numerical models of
increasing complexity, we demonstrate that the proposed ap-
proach is efficient and converges to an optimal minima as op-
posed to the manual tuning of hyper-parameters.

HYPER-PARAMETER OPTIMIZATION

We implement the HPO workflow for a deep learning frame-
work using UNet architecture (Ronneberger et al., 2015). We
optimize two different categories of hyper-parameters, i.e., de-
sign hyper-parameters related to the construction of a deep
learning model (number of filters, activation function, etc.) and
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optimizer hyper-parameters related to the training process of
the model (learning rate, dropout rate, mini-batch size, num-
ber of epochs, etc.). For the design-based hyper-parameters,
we provide several filters and activation functions, and the op-
timization process selects the best combination on the basis of
the complexity of the problem. Next we specify the search
space for following optimizer hyper-parameters:
Learning rate - It is one of the most important hyper-parameters
in a deep learning model, which defines step size for the con-
vergence of the iterative process. A high learning rate can ac-
celerate the training process but may also oscillate the gradi-
ents and hinder convergence, whereas a low learning rate leads
to smooth convergence with a longer training time. We pro-
vide a range of learning rates (Table 1) and the optimization
algorithm selects the appropriate learning rate to converge the
objective function to global minima.
Dropout rate - Dropout is a method of stochastic regulariza-
tion, which prevents overfitting and enables the neural network
to learn robust features (Srivastava et al., 2014). It is a compu-
tationally efficient method to simulate an ensemble of neural
networks by randomly dropping neurons during the training
process. We use a dropout range of 0.0 to 0.5 with a step size of
0.05, and the optimization algorithm finds the optimal dropout
rate for the neural network training.
Batch size - Batch size is the number of training samples used
to estimate the gradient. Selection of batch size impacts train-
ing stability and generalization performance (Bengio, 2012).
Smaller batch size offers a regularization effect and lowers
generalization error. We incorporate different batch sizes in
the search space for the optimization algorithm, and the work-
flow automatically selects the optimal batch size for training.

Table 1: Hyper-parameters and their respective values.

Filters Activation Batch Dropout Learning
functions size rate rate

32-64 Sigmoid 8-16 0-0.5 0.001-0.01
ReLu, tanh

We initiate the optimization process using the earlier defined
search space, and optimize the hyper-parameters using three
optimization algorithms:
1) Decision theoretic approach-The first algorithm that we im-
plement is a random search, which is a type of decision theo-
retic method. Random search algorithm randomly selects the
hyper-parameter configurations in the search space defined by
the user and trains these candidate values until the defined tri-
als are exhausted. It can cover a large search space; however,
it treats each evaluation independently and does not keep track
of the previously well-performing regions. We implement ran-
dom search with 20 trials, and discuss the test results of the
best performing model in the next section.
2) Multifidelity optimization-We further improve the efficiency
of the random search algorithm by using multifidelity opti-
mization. One of the issues with random search method is that
with a larger hyper-parameter configuration space, the longer
execution time may not let the algorithm converge to global
minima if the resources are limited. To overcome this limita-
tion, Hyperband achieves a trade-off between the number of

hyper-parameter configurations and their allocated budget by
discarding the poorly performing configurations in each itera-
tion using a successive halving method and passing only well
performing configurations to the next iteration. We compare
test results in the next section.
3) Bayesian optimization- Earlier mentioned algorithms in-
dependently process each hyper-parameter configuration and
may thus end up wasting a lot of computational time in poorly
performing regions of the search space. To circumvent this
issue, we implement Bayesian optimization. Unlike earlier
mentioned algorithms, Bayesian optimization determines the
next hyper-parameter configuration on the basis of previously
tested configurations and, thus, given appropriate resources, it
assures convergence toward the optimal configuration (Yang
and Shami, 2020). Bayesian optimization has two key com-
ponents: a surrogate model that fits observed points into the
objective function and an acquisition function that provides
a trade-off between exploration and exploitation regions. We
first obtain the predictive distribution for the probabilistic sur-
rogate model. Next we use the acquisition function for explo-
ration where we sample instances in regions that have not been
previously sampled, as well as exploitation, where we sample
the most promising regions with higher likelihood of global
optima. The advantage of using Bayesian optimization is that
it can detect the optimal hyper-parameter configuration on the
basis of previously tested values. However, dependence on the
previously tested values makes the model sequential and diffi-
cult to parallelize.
We train the network in two steps: hyper-parameter optimiza-
tion and parameter tuning, where parameter tuning updates
weights and biases. We create training labels using different
isotropic and anisotropic models with different source wavelet
frequencies using 2,500 time slices from 5 shot locations at
the corner and in the center of the model. We train the net-
work to learn the mapping between the bounded model con-
sisting of spurious reflections and the padded model used to
simulate the unbounded domain (Figures1). We first define
hyper-parameters for the deep learning model, along with the
search space. Next, we implement hyper-parameter optimiza-
tion workflow using random search, Hyperband, and Bayesian
optimization workflows with 20 trials. After optimizing the
hyper-parameters, we pick the best hyper-parameter configu-
ration from the leader-board of models (green line in Figure 2)
and use it to tune the parameter for network training. We in-
corporate K-fold cross-validation in the training process to an-
alyze the generalization ability of the proposed model. For this
work, we choose K = 5, which as shown by Kuhn et al. (2013),
has low bias and modest variance. We fit the model using K−1
folds and validate the data with the remaining Kth fold. We re-
peat this process until every Kth-fold serves as the test set, and
we note down the error for each fold. The mean square of
errors (MSE) from all iterations gives us the cross-validation
(CV) performance metric given as CVk = 1

k
Pk

i=1 MSEi. We
obtain values of 0.0027, 0.0023, 0.0035, 0.0027, and 0.0029
for different folds with an average value of 0.0028, which in-
dicates that we do not have a split bias and the network gen-
eralizes well on the unseen data. During training, the network
learns to attenuate spurious boundary reflections. Then we test
the trained network using the best hyper-parameter configura-
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tion by using the three optimization algorithms and perform a
comparative analysis during the testing phase in the following
examples.

(a) (b)

Figure 1: One of the training slices for HPO and parameter tun-
ing. The network learns mapping from wavefield in bounded
domain (a) to the wavefield in unbounded domain simulated by
padded model (b) using different HPO workflows. The trained
network is then tested for comparative analysis between differ-
ent HPO algorithms.

EXAMPLES

Gradient velocity model
We first use a synthetic model with large velocity variations
(Figure 3a). The model is discretized on a 400 × 400 grid with
a 5-m spacing along vertical and horizontal directions (Sun
et al., 2016). We simulate the wavefield by using a low-rank
extrapolation operator (Fomel et al., 2013) with a 20-Hz Ricker
wavelet and a time step of 2 ms. A blind test slices is shown
in Figure 3b, and the ground truth (not seen by the network)
is shown in Figure 3c. We test the trained network to ana-
lyze output using the three HPO algorithms, namely, random
search, Hyperband, and Bayesian optimization (Figures 3d, 3e,
and 3f) with a constrained number of trials. The test output us-
ing the random search algorithm needs further improvement
(marked by the red arrow in Figure 3d). Next, we analyze the
test results using Hyperband algorithm (Figure 3e). Hyperband
eliminates poorly performing hyper-parameter configurations
in each run, and, therefore, in a given number of trials it can
converge to near optimal minima, as compared to the random
search method. However, we still have some remnant spuri-
ous reflections (red arrows in Figure 3e). Next, we test the
Bayesian optimization model (Figure 3f). In the same number
of trials as the other two methods, the Bayesian optimization
model converges to an optimal minima, and the output is close
to the ground truth (Figure 3c). To quantify the output using
the three optimization methods, we compute the structural sim-
ilarity index (SSIM) (Wang et al., 2004) and correlation coeffi-
cient (R2) (Table 2) for the test cases, which indicates that the
Bayesian optimization determines a more appropriate hyper-
parameter configuration because it takes into account previous
evaluations, and with each iteration it moves closer to the op-
timal minima.

Marmousi Model
In the previous example, we observed that Bayesian optimiza-
tion produces the best hyper-parameter configuration, and its
output is close to ground truth. We test the best picked model
using Bayeisan optimization on the Marmousi model (Versteeg,

Figure 2: HPO with Bayesian optimization workflow. Op-
timization workflow considers dynamic interaction between
hyper-parameters and converges to optimal minima. Green
line shows best combination of hyper-parameters (with low-
est loss) and red line shows worst performing hyper-parameter
combination (with highest loss).

1994). The model is discretized on a 376 × 384 grid with
a spatial sampling of 25-m along horizontal and vertical di-
rections (Kaur et al., 2019, 2021). We simulate the wavefield
using a low-rank extrapolation operator (Fomel et al., 2013)
with a 15-Hz Ricker wavelet and a time step of 2 ms. The test
wavefields with spurious reflections for two different shot lo-
cations are shown in Figures 4a and 4d. The output using the
Bayesian optimization workflow (Figures 4b and 4e) is free of
the boundary reflections and wrap-arounds and is close to the
output using the unbounded media simulated by padded model
(Figures 4c and 4f).

Table 2: SSIM and correlation coefficient for test case: Com-
parative analysis between three HPO algorithms.

Metrics Random Search Hyperband Bayesian
SSIM 0.87 0.95 0.97

R2 0.87 0.96 0.98

CONCLUSIONS

We have developed an automated hyper-parameter optimiza-
tion workflow for a deep learning framework. We train the
network using the best picked model from the hyper-parameter
optimization workflow and perform a comparative analysis be-
tween three different optimization algorithms; random search,
Hyperband, and Bayesian optimization. We demonstrate that
for a given search space and computational resources, Bayesian
optimization performs better than random search or Hyper-
band because for each hyper-parameter configuration, it takes
into account the previous evaluation, which helps convergence
within a few iterations. The proposed algorithm reduces man-
ual input into training process, optimizes values of hyper-para-
meters for a deep learning framework, and thus maximizes the
predictive accuracy of deep learning models. We show appli-
cation of the proposed workflow for simulating the boundary
condition for wave propagation; however, the proposed hyper-
parameter optimization workflow can easily be integrated into
a variety of deep neural networks for different problems.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Blind-test results for gradient velocity model at t=1.82 s (shot locations and time slices are not part of training); (a) gradient
velocity model, (b) wavefield time slice for bounded media with boundary reflections and wrap-arounds, (c) wavefield time slice
for unbounded media simulated using padded model. Output wavefields free from boundary reflections and wrap-arounds using
(d) random search optimization, (e) Hyperband optimization, and (f) Bayesian optimization. Red arrows indicate the regions where
random search and Hyperband optimization needs further improvement.

(a) (b) (c)

(d) (e) (f)

Figure 4: Marmousi model test data for network trained using Bayesian optimization. Wavefield snapshot at t=1.47 s: (a) wavefield
snapshot with boundary reflections, (b) wavefield snapshot using proposed method, and (c) wavefield snapshot without boundary
reflections in unbounded media simulated by padding the model. Wavefield snapshot at t=1.524 s for different blind-test shot loca-
tion: (d) wavefield snapshot with boundary reflections, (e) wavefield snapshot using proposed method, and (f) wavefield snapshot
without boundary reflections in unbounded media simulated by padding the model.
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